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The quantization of N=2 supersymmetric Yang-Mills theory coupled to a 
Fayet-Sohnius hypermultiplet is performed in the harmonic superspace, by 
requiring BRS and anti-BRS invariances. The corresponding Ward identities 
and the renormalized BRS and anti-BRS symmetries are derived. 

I N T R O D U C T I O N  

Supersymmetric field theories have been attracting much interest, 
since in such theories there are remarkable cancellations of ultraviolet 
divergences. These cancellations are expected to be even more dramatic in 
the case of  extended supersymmetry. So far, superfield perturbation theory 
has been developed only for N - - 1  supersymmetry (Salam and Strathdee, 
1974, 1975). The cancellations of ultraviolet divergences are most easily 
seen in this context of  superfield perturbation theory, where supersymmetry 
is manifest (Wess and Zumino,  1974; Il iopoulos and Zumino, 1974; Howe 
et al., 1984). Indeed, quadratic divergences are absent, a fact which gives 
a key to resolving the hierarchy problem (Veltman, 1980). However, in the 
supersymmetric mode l s  the cancellations are due to the supersymmetric 
Ward identities (WI) and the breaking of these identities leads to additional 
ultraviolet divergences in the perturbative theory. 

In order to handle the ultraviolet divergences in a systematic way for 
extended supersymmetry,  it is apparently necessary to develop the superfield 
formulation. Galperin et aL (1984) put forward a new idea called harmonic 
superspace and developed N = 2 superspace formulations. Their method 
has the advantage in that their superfields are not constrained. The main 
feature of  the harmonic superspace is that it contains a Zweibein  U~: (i = 1, 2) 
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which parametrizes the coset space S U ( 2 ) / U ( 1 )  and any superfield in 
general contains an infinite number of component fields (Galperin et al, 
1984; Siegel, 1985). 

Superfield perturbation methods for this theory in the harmonic super- 
space have been developed in two ways. The first is by using the Faddeev- 
Popov procedure where the quantum Lagrangian is obtained via covariant 
gauge (Galperin et al., 1985a; Ohta and Yamaguchi, 1985). The second is 
by requiring the BRS and anti-BRS invariance (Lhallabi and Saidi, 1986, 
1988; Lhallabi, 1988a), which is the clue to the proof  of renormalizability. 

In this paper we construct the N = 2  supersymmetric quantum 
Lagrangian of the gauge and matter hypermultiplets using the BRS and 
anti-BRS prescription. The gauge fixing term is obtained by using the 
equation of  motion of the auxiliary superfield b. For a particular choice of 
gauge parameters, one recovers the extended R-~: gauge in N = 2 supersym- 
metric theory. Furthermore, the N = 2 supersymmetric WI are obtained by 
using simultaneously the BRS and anti-BRS symmetries. Following Zinn- 
Justin (1984), the renormalized N = 2 supersymmetric Lagrangian in har- 
monic superspace can be obtained. However, some difficulties specific to 
the harmonic superspace, for instance, the infrared divergences in the kinetic 
term of V ++, make the fulfillment of this renormalization method not 
straightforward. Indeed, it is argued that these may be regulated in the 
context of  dimensional regularization (Mandelstam, 1983; Brink et al., 1983; 
Johansen, 1986) and do not affect the validity of the WI. 

The paper is organized as follows. In Section 2 we give some pre- 
liminaries on N = 2 harmonic superspace, while in Section 3 we derive the 
BRS and anti-BRS transformations for gauge and matter hypermultiplets. 
Then we construct the N = 2 supersymmetric, BRS and anti-BRS invariant 
Lagrangian corresponding to gauge and matter hypermultiplets. However, 
we show that for the R-~: gauge choice we obtain an inconvenient mixing 
of gauge and matter hypermultiplets as in N = 1 and N = 0 Yang-Mills 
theories interacting with the matter multiplet. In Section 4 we derive the 
N = 2 supersymmetric WI by using simultaneously the BRS and anti-BRS 
symmetries. The action of WI operators on the effective action leads to 
local insertion operators. These latter are written as integrals with the full 
N = 2 Grassmann measure. Furthermore, the renormalized BRS and anti- 
BRS operators leaving invariant the renormalized Lagrangian are obtained. 
Finally, Section 5 is devoted to our conclusions. 

2. GENERALITIES ON THE N =2  HARMONIC SUPERSPACE 

We begin this section by briefly recalling some concepts of harmonic 
analysis, following the conventions and notations of Galperin et al. (1984), 
Lhallabi and Said (1986, 1988), and Lhallabi (1988a). 
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In the harmonic superspace (HS) formalism, the harmonic variables 
(Zweibein) U~ play an important role in the construction of N-extended 
supersymmetric theories. They are introduced as nonlinear realization of 
the SU(2)  group with U~(1) as a stability subgroup (Galperin et aL, 1984) 
and satisfy the following properties: 

u + i u ~  = 1, U=I-iu:~ = 0 (2.1) 

They have an SU(2) index i and a UC(1) index • With their help, 
any SU(2) isospinor F i can be converted into a pair of independent UC(1) 
objects: 

F • i • = F Ui (2.2) 

The N = 2 harmonic superspace in the real or central basis (CB) is 
parametrized by the coordinates (X ~, 0 / ,  0~, U?), where Oi, and O/ are 
Weyl spinors and SU(2) isospinors. From (2.2) one can pass to another 
basis called the analytic basis (AB) given by 

z = (X,~ = X ~ -2iO(io'~OJ)U]-U~ 0+~, -+ , 0a,  02,  02-, U?)  (2.3) 

In this (AB) the N = 2 supersymmetry is realized as follows: 

6 X ~  = - 2 i ( e  'o-"t? + + O+cr"U) U7 

~o~ = ~ u?  
~g~= _~ • (2.4) 

F, 6~ Ui  

~cr7:0 
We note that the variable sets Za = (X~,, 0 +, 0+, U~:) and (X~. = X "  + 

i(O+cr"O--O-o'"O+), 0+,0~ ,  U~:) form closed subsets under the N = 2  
supersymmetric transformations. We call these analytic and chiral subspaces 
(AS) and (CS), respectively. This allows us to define an analytic superfield 
(ASF) ~q( x a ,  0 +, 0+, U ~:) satisfying the analyticity condition: 

D+~ q = 0 = O+~ q 

where q is the U~(1) charge and 

D+=O/O0 - , /5+ = 0/00 - (2.5) 

In this (AS), the covariant derivatives are defined by 

D++=O++-2iO+ o'"O+Oa~ (2.6) 

where 

0 
a++= U + i _  

OU -i 

0 
D -  = - O0----- ~ + 2icr~O-O~ 

~ _ _  o 
Og+- 2iO-o-" Oa~ (2.7) 
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It is well known from the study of irreducible representations of 
N-extended supersymmetric algebra (Wess and Bagger, 1983; Gates et aL, 
1983; Ferrara and Savoy, 1982) that there exist two global N = 2 multiplets, 
denoted as (04, 1/22) and (02, 1/22, 1). The gauge multiplet (02, 1/22, 1) is 
described by the real analytic superfield V ++ having two UC(1) charges 
and zero mass dimension. The corresponding field strength W, which is a 
chiral superfield, independent of U~: variables, leads to the classical action 
(Galperin et al., 1985a; Ohta and Yamaguchi, 1985) 

f 
Io = J d4XR d20 + d20+d2~ - 

which can be expanded as 

Io = I d4XA dU ~o 

where 

with 

Tr W 2 (2.8) 

.5~o= f d20+ d20+Tr[V ++ 1 (D+)4D--v++I+s (2.9) 
D ++ 16 

i 0 p,-- A 
D--=  U- OU+i-2iO-cr 0-0~ 

For the N = 2 scalar multiplet (04, 1/22) there corresponds two analytic 
superfields, the Fayet-Sohnius (FS) hypermultiplet (Fayet, 1976; Sohnius, 
1978) and the Howe-Stelle-Townsend (HST) hypermultiplet (Howe et al., 
1983). The first one is described by a complex ASF 4~ + having one UC(1) 
charge and one mass dimension. The second one is obtained from a non- 
charged, real ASF 1). However, the free action describing the (FS) multiplet 
~b + is given by 

I~ = I d4Xa dU~+ (2.10a) 
d 

with 

~ = fJ d20 + d20 + 4~+D++4~ + (2.10b) 

Furthermore, the analytic superfields V ++ and ~b + transform under 
gauge transformation of any gauge group G as 

V ++' = -ieia(D ++ + igV++)e -iA (2.11a) 

th+'= eia~b + (2.11b) 

where A is a real, analytic superfield. 



BRS and Anti-BRS Operators 879 

It has been established (Galperin, 1984) that gauge interactions can 
be obtained from free global actions (2.10) by covariantizing the harmonic 
covariant derivatives D §247 namely 

D ++--> d ++ = D+++ igV ++ (2.12) 

Therefore, the full action of the (FS) multiptet interacting with the 
gauge hypermultiplet is given by 

I~= J d4Xa dUd's, ~'~ = J- d20 + d20 + ~/~+ d++0+ (2.13) 

Now we construct the N = 2  supersymmetric quantum Lagrangian 
describing gauge and matter hypermultiplets by requiring BRS and anti-BRS 
invariances. 

3. N =2 SUPERSYMMETRIC QUANTUM LAGRANGIAN 

In order to construct the quantum Lagrangian of N = 2 supersymmetric 
Yang-Mills theory interacting with the (FS) matter hypermultiplet, we will 
postulate that the independent superfields are the gauge multiplet V ++, the 
analytic ghost and antighost superfields C and C' respectively, the auxiliary 
superfield b, and the (FS) hypermultiplet. All these superfields are in the 
adjoint representation of a compact group (3. The quantization of this theory 
can be achieved by adding a gauge fixing term to the Lagrangian (2.9) 
(Galperin et al., 1985a; Ohta and Yamaguchi, 1985) or by requiring BRS 
and anti-BRS symmetries (Lhallabi and Saidi, 1986, 1988; Lhallabi, 1988a). 
Such symmetries may be understood as being the necessary conditions for 
the cancellation between the unphysical and ghost modes. They are deduced 
by extending the (AS) to 

YA = (ZA,  ~, ~') (3.1) 
where ~:, ~:' are anticommuting scalar variables. A superfield in this extended 
analytic subspace (EAS) may be expanded as 

~9(ym) t~9(ZA).q.. " 9  , "9 = ~:~b (ya)[~=r 8~,6 (YA)"Y~=~'=o 

+ ~'6~6~,~9(yA)[~=~,=o (3.2) 

The BRS (8~) and anti-BRS (6~,) transformations for ghost superfields C, 
C' and the auxiliary superfield b are obtained from the flatness in the 
unphysical directions ~: and ~:' by (Lhallabi and Saidi, 1986, 1988; Lhallabi, 
1988a) 

8~C = - C  x C, 8~,C = - b  + C x C '  

6~C'= b 6~C'= - C '  x C' (3.3) 

6eb = 0 
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where 
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A x B =�89 B] 

For the gauge hypermultiplet V ++ and (F.S) hypermultiplet ~b +, the 
BRS and anti-BRS transformations are obtained by making a special gauge 
transformation with a gauge parameter A which is restricted to be an analytic 
superfield: 

A =  5C + ~'C'+ (~'b (3.4) 

Hence, the gauge transformation (2.12) can be extended as 

7 ++ = - i e~(D++ + igV++)e -i;x 
(3.5) 

However, for an infinitesimal transformation one has 

t3V ++ = ig[A, V ++] - D++A 

6~+= iAO + 
(3.6) 

Using equation (3.2), one has for the variations of V ++ and th + 

6 V ++ = ~ V ++ + ~'6~, V ++ + ~'6~6~, V ++ 

~4~ + = ~ r  + ~'~,4~ + + f f ' ~ s ~ , ~  + 
(3.7) 

Identifying (3.6) and (3.7), one obtains the BRS and anti-BRS trans- 
formations for V § and ~b § namely 

~eV ++ = -D++ C - ig[ V ++, C]; 

~ec~ + = iCc~ +; 

6 r  ++ = - D + + C  ' -  ig[ V ++, C'] (3.8a) 

6r + = iC' da + (3.8b) 

As can be seen, the classical Lagrangian 

~ c l = f  dZO+d20+Tr[ V++ 1D ++(D+)4D--16 V++] 

I . + d20 + d2~ + ~+(D+++ igV++)&++~int(V++ ) (3.9) 

is invariant with respect to the BRS and anti-BRS symmetry equations (3.8), 
(3.8b). However, in order to quantize the theory, we shall add to the classical 
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Lagrangian (3.9) variations with respect to ~: and ~:'. They read 

~ ~  ~ '  + l  f d20+ d20+Tr{8~3~'[ - 

+ 32c~C,(D++) 2 1 ]}  (D+)4(D__)2 C 

+ f d20 + d2~+ 6~:3#{v3+4 ++/~3+(~+..~/~.2+(/~+(/)+q._,, .} 

(3.10) 

where ~ is a gauge parameter and v 3+ and A2+ are dimensioned coupling 
constants. The dots indicate that higher order interaction terms are allowed. 
Furthermore, note in (3.9) the nonlocality of the V ++ kinetic term in the 
harmonic variables. These harmonic nonlocalities are shown to disappear 
in supergraph calculations (Oalperin et al., 1985b). In contrast, the second 
term in equation (3.10) is nonlocal in X space. This is related to the 
dimension (+2) of the measure and the dimension (+ 1) of ghost superfields. 

Let us now show how a gauge fixing term can be obtained in this way. 
To this end, one computes the 6~# term; using (33) and (3.8), restricting 
ourselves to the written terms, one obtains 

"=~PQ= ~/~cl + t d20+ dag+Tr{ D++C'~++C + g2[ V++' C][ V++' C'] 

a (D++) 2 
- ~  [c', c'] ~--U=- Ec, c]+~3+c'cep++~3+~+cc ' 

�9 ( D + + ]  2 
-2A2+~+[C' C']ch+ + bD++V++-~-2 b - : - - ~  b 

O~ b (D++)2 v3+~+q- 2A2+q~+qS+)} + -ff -""--~- [ C, C ' ] + i b ( v 3 + q~ + + (3.11) 
J 

where ~++C = D++ C + ig[ V ++, C]. 
Eliminating the auxiliary superfield b by using its equation of motion, 

one gets the following form for the quantum Lagrangian: 

~o=s162 

1 [ 1 V+ + 
+ ~ V ++ [] V ++- 2[5] D++D__ 

t , .  

q-aio~-~+(v3+d)+q-f~3+~+)q-4is ] 
+ d+c'c4~++ ~3+6+cc'- 2a >&+[c, c']4+ + g~[ v ++, c][ v ++, c'] 
q Or ++ 2 / 

4 [C' ,  C'] [C, C] higher order in v , 12+j (3.12) 
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where 

f V++U1 V++ V++ 2_____~__D V+ + D++D -- 

+2iV ++ (/)3+fb+ +~3+ f+)+4iV ++ A 2+,~+~b + ] (3.13) 

is the gauge-fixing term. When v 3+= A 2 + = 0  o n e  recovers the gauge 
condition D +§ V +§ = 0 containing the Lorentz gauge of N = 0 Yang-Mills 
theory (Galperin et al., 1985a). Furthermore, for v3+r  and A2+=0 one 
obtains the N = 2 supersymmetric R_e gauge, namely 

f4+= D++V++ +i  l [a+D++(o+ + g~+D++~+ ] (3.14) 

with 

I)3+ = l a +  D++ 

where a + is a constant and ~: is a new gauge parameter. 
In fact, if we consider the following gauge-fixing Lagrangian term of 

the Faddeev-Popov theory (Galperin et al., 1985a), 

5fg f=- l  f d20+ d2ff+Tr ~4+ l(D++) 2 (D+)4(D--)ef4+16 (3.15) 

and if we use (3.14), we obtain 

2[] 
V++_ V++ _ _  V++ D++D -- 

} + 2iV++[a+4~+ + a+~+] + higher order in a + (3.16) 

which is analogous to the gauge fixing term (3.13). Furthermore, equation 
(3.16) shows that this gauge leads to an inconvenient mixing of V §247 and 
0 + as the N =  1 supersymmetric (Ovrut and Wess, 1982) and ordinary 
Yang-Mills theories (Baulieu and Thierry Mieg, 1982) interacting with 
matter fields. We expect that such coupling can be overcome if the internal 
symmetry is spontaneously broken. Indeed, one may ask if there exists any 
N = 2 supersymmetric scalar potential for which the gauge symmetry is 
broken. The answer to this question will be given elsewhere. 
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~+§ V+§ 

Fig. 1 

However, as a matter of fact, the differences in the Feynman rules 
between the Faddeev-Popov theory (Galperin et aL, 1985a; Ohta and 
Yamaguchi, 1985; Ovrut and Wess, 1982) and the BRS and anti-BRS 
invariant theory are: (1) the ghost-gauge superfield coupling is changed, 
and (2) the fourth-order ghost-ghost coupling, which is analogous to that 
in the Curci and Ferrari (1976) form of the N = 0 Yang-Mills Lagrangian, 
appears at the tree level. Such a term is nonlocal in X space and disappears 
for the U(1 )-gauge group. Furthermore, knowing the N = 2 supersymmetric 
Faddeev-Popov theory results, the only new diagrams are those displayed 
in Figures 1 and 2. 

Now we come to the derivation of N = 2 supersymmetric WI of BRS 
and anti-BRS symmetries by restricting ourselves, for simplicity, to the pure 
Yang-Mills case. 

4. THE N =2  SUPERSYMMETRIC WARD IDENTITIES AND 
RENORMALIZATION 

As we have seen in Section 3, the quantization of N = 2 supersymmetric 
Yang-Mills theory has much in common with the case of N = 0. However, 

<c c'7 ~ <c c'> 
+~ _( ,, ~* +* < ,, +* 

. . . .  " < - c & -  
<c'c> 

! 
/ C  ,~ <~c'> i/~ * c', <cc'> , 

\ / 

<c= + C ' /  4c 'c> \ 
\ \  C j 

\ 

Fig. 2 
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the renormalization method of the underlying theory can be made in the 
same way as that given in Zinn-Justin (1974), Baulieu and Thierry Mies 
(1982), and Baulieu (1985) for ordinary Yang-Mills theory. Indeed, some 
difficulties specific to the harmonic superspace and to the BRS and anti-BRS 
quantization method, namely (1) the harmonic nonlocality (a # 1) in the 
kinetic and gauge-fixing terms of V ++ and (2) the nonlocal fourth order 
ghost-ghost coupling equation in (3.12), make the fulfillment of this program 
very delicate. Therefore, the BRS and anti-BRS quantization will suffer 
from infrared divergences. It is argued that these may be regulated in the 
context of dimensional regularization (Mandelstam, 1983; Brink et al., 1983; 
Johansen, 1986) and do not affect the validity of the WI. In what follows, 
we derive the N = 2 supersymmetric WI by using simultaneously the BRS 
and anti-BRS symmetries. We shall also confirm that all the quantum 
corrections to the effective action can be written as integrals with the full 
N = 2 Grassmann measure. 

Let us start from the pure Yang-Mills N = 2  supersymmetric and 
gauge-fixed Lagrangian, namely 

LQ=f d20+d20+dUTr{1V++K3V+++(1-1) V++ 1D ++(D+)~aD--V++16 

(D++) 2 
-Zrc'  C']~--f--~-[C, C] +D++C'~++C+g2[V++, C][V ++, C'] 4 L , 

(D++)2 } +bD++V++-a-b(D++)2b+a-b--~--[C,C'] +Lint(V ++) (4.1) 
2 [] 8 

Furthermore, consider a system of external analytic superfields p;2+ 
and r/; 4+ (q indicates the Faddeev-Popov charge) coupled to composite 
superfields as follows 

L = LQ + f d20 + d20 + dU {P'2~-6- ~ V + + +  7-2'4+~b,~(-f~+ r/~4+ ~:C ' 

.]_ t2+e, ~ r + + ~  t4+r ~ , ~  f4+r / ~ t L  12-- V++ P+I o~,v T~o octal-r/+2 oe, t~ -epo ~6e6 ~, 
+ r/'_41+ ~e6~, C + r/~+ ~6~, C'} (4.2) 

This Lagrangian can be written as a full d80 integral by using the identities 

(D+)4(D--) 2 
F q _ 

32[5] 

p~2+ (D+) 4 2- 
= 16 Pq 

,y] ~4+ ( D + ) 4  

= 16 r/q 

F ~ for ++ V , C, C , a n d  b 

(4.3) 
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for external analytic superfields. Hence (4.2) becomes 

L ~- LQ+ I d80 dU{p2--~8~V++ + ~_2~C + ~7o~C' 

2 -  ++ +P+lSe'V +rlo6r po2-" "o~.oe' v"++ 

+ 71_16~6e,C + r/+la~ae,C' } (4.4) 

where 

LQ= f dSOdUTr{2~ V++(D--)2V++ + ( 1 - 1 ) V  ++ D-- V ++ 

1 (D--) 2 C,D++~++C+ V++, 
2 

c~[ (D--)2 C, ] (D++) 2 1 (D--)ZbD++V+ + 
--8 c', - - - - f f -  [ c, c ] 2 [] 

(D++)2 } 
(D++) 2 a (D--)2b,_ , [C,C, ] a (D-- )  2 b b + +Lint(V ++ ) 

4 7 1  71 {6 I--I 
(4.5) 

In order to avoid infrared problems in harmonic variables, we choose the 
supersymmetric Feynman gauge (a = 1) usually preferred in the literature 
due to the better infrared behavior of the propagators. Furthermore, if we 
introduce external nonanalytic sources coupled to analytic superfields, the 
Lagrangian (4.5) becomes 

L+ f dsOdU{J 2- ++ L' = V +JcC+Jc,C'+Jbb} (4.6) 

Note that the BRS and anti-BRS invariances are maintained by prescribing 
that all external superfields do not transform. The generating functional of 
Green functions is then given by 

exp[iW(J, p, -q)] 

=fDV++DCDC'Dbexp{ i fd4xL  

+ i f  d'2zdU[J2v-V++ +JcC+Jc,C'+Jbb]} (4.7) 

From (4.2) and (4.7) we remark that we may express all composite superfields 
by differentiation with respect to the corresponding nonanalytic external 



886 Lhallabi 

superfields. Moreover, the generating functional of one-particle irreducible 
is defined by 

r [v  ++, c,  c ' ,  b, p, rl'] = W[J, p, rl] 

- f  d '2zdU[J2~-V+++JcC+Jc,C'+Jbb ] (4.8) 

Now let us perform the infinitesimal change of all superfields 4~ -+ 4~ + e 6 ~  
and 4~ -+ 4~ + e'6~,c/5; we obtain 

0 = I dtZa dU{J2~-6~V+++Jc6~C +Jc,6~,C' 

+ p2-~6e6 ~, V ++ + ~1o6~6~,C + r1+26~6#C'} (4.9) 

and 

r 
o = J d X2z dU{j2-6# V ++ + Jc6~,C + Jc,6r 

+ Jb6r + 62--~6~6e , V ++ + rl-26e6r (4.10) 

or equivalently 

w~'r  = d'2z dU 6 ~  + 6,o~ '- 6-o~_~ 6v++l 2 ~ 6,7_~ + 6r,_~6r 6 

6 2 6  6 a--~+,} 
+ b -d77~, q- p +] -7-g'y_ q- r/o - -  -+- r/+2 F = 0  (4.11a) 

6C 6po- 6rl-x 

and 

WF1F = dl2 z dU 6Vu ~ ~- 2- 6V+.g q- 6p~-1 8p+1 2 6-C6r/o 6rlo~--C- 

+ 2  ~--~6r/+2+6rl+2~-(~ -' 2 -~ '6r t+,+6~+,6-b 

_ 2 -  6 + 6 
p _ l - ~ o  z_ r /_2--~_l}r=O (4.11b) 

These expressions (4.11) are the N = 2 supersymmetric WI corresponding 
to BRS and anti-BRS invariances. We observe that the WI operators Wr ~ 
act nonlinearly on F. Such nonlinearity originates from the coupling of all 
external superfields to nonlinear BRS and anti-BRS variations of analytic 
superfields. Furthermore, the WI operators satisfy algebraically the follow- 
ing nilpotency properties as in the N = 0 (Baulieu and Thierry Mieg, 1982) 
and N = 1 (Lhallabi, 1986) Yang-Mills theories: 

W~. I W~IV = ( WT I W~ I -1- W~71 w ~ l ) F  = W~71W~71F = 0 (4.12) 
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which play a fundamental role in the construction of a renormalized 
generating functional. However, in order to obtain a renormalized effective 
action, the WI must be satisfied to all orders of perturbation theory. If  they 
cannot be satisfied, even though we add suitable fnite local counterterms, 
then the symmetry is anomalous. Moreover, an important argument in 
working with renormalized quantities is the quantum action principle 
(Schwinger, 1951), which does not depend upon the details of a particular 
regularization scheme. Therefore, the action of WI operators on the effective 
action leads to local insertion operators. These terms are written as full d80 
integral. Furthermore, the renormalized effective action, which we will call 
Fr, can be constructed by absorbing these insertion operators in the action. 

In what follows, we will show that there exist renormalized BRS and 
anti-BRS invariances which keep the renormalized theory invariant. 
However, at the tree approximation of Fr, one has 

r~~ f d4xLr(V ++, C, C', b) 

+ f  dl2e 2 -  2+ 2 -  2+ ~ 2 - - r . 2+  dU {p_lqlv+++p+aRlv++,-po fly++ 

+ TI-zq2c + "rloRzc + "q_lP3c + " q + 2 q 3 c , +  "r/oR3c, 

+ r/+,P3c.+ ~q+,Rb + ~(p, 7, V++, C, C', b)} (4.13) 

where qi, Ri, and ~ are unknown polynomials in the superfields and external 
superfields. By construction, F~ ~ must satisfy equations (4.11) and (4.12), 
namely 

W+lr(o) _ a - Wr~r~ ~ (4.14a) F r X r  - - ~ - -  

w ~ l  |~/ '+llv '(O) - -  +1 -1  -1  | ~ / + l ~ r ( O  ) 
�9 , r ,  - ~ - ( W r r  W r ,  + W r ,  , ,  r,. J -  r 

= Wr,! Wr,~F7 )= 0 (4.14b) 

These equations are in fact sufficient to determine the explicit form of L, 
and the unknown polynomials. Let us now introduce the following 
operators: 

f { 2+ 6 _~_8 + b_6_8 ~ 6~= dl2zdU ~qlv§ 6C rsC'J 

~$r,= dl2zdU R~++ +R2c-~-~+R3c,~,+Rb~-~ 

(8~8~,) f d ' 2 zdU{  2+ 8 6 8 ] 
= P,v++-V- +P2cTd+P3c, ,  

(4.15) 
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By definition, 

6~V++ 2 6~C = qzc,  = q l v  ++ , 

r + +  2+ 
R l v  ++,  6e, V = 6~,C = R2c  , 

(6~6~,)V++=P~v++, (6~6~ , )C=Pzc ,  

~ b = O ,  8~,b=Rb,  

6~C'=  b 

~ , C  ' =  R3c,  

(6~8; , )b=0 

Hence, equation (4.14a) are rewritten as 

I ~ r~  ~ ~ ~r~ ~ ~ 
"~ r r ' ( ~  -I- 
~'r d12zdU [6v++ Sp2_-~+ 6C r 2 

(o) (o) ar~O)] 8r r  6F~ 
p~+~ ~o~--=_ + ~o ~_--~+ ~+~ ~-~+, l =0 

and 

(4.16) 

(4.17a) 

I 8F~ ~ a ~  st  r(o) dl2z ~" 6F~ ~ 8~ o + _ _  
~,r + d U  [SV+ + 8pZ+- 8C 8rio 

sr~ ~ ~r~~ 8F~ ~ 8 ~  8F~~ ~ 8 ~  p2~ 8-~~ + r/_2 8-~-1J = 0 (4.17b) 
-t 6C'  8r1+2 t- 8b 8rl+l 

Combining (4.13) and (4.17), one finds that the renormalized Lagrangian 
is 8~ and 8~, invariant, 

6~Lr = 0 = 6~,Lr (4.18) 

and 

(6~,) 2 = (6re6~,+ 6~,6~) = (6~) 2 = 0 (4.19) 

which must be verified for all values of external superfields. These equations 
in conjunction with 

8~C '=  b and 6~b = 0 (4.20) 

ate sufficient to determine the explicit action of 6~ and 6~, on all superfields. 
However, since rl-2 has dimension 2 and ghost number (-2) ,  8~C must be 
bilinear in the ghost superfield C. Thus, there exists a renormalized bracket 
[ ' , ' ] r  such that 

6~C = - �89  C]r (4.21) 

Furthermore, the condition (4.19) implies that [ . ,  "]r satisfies a Jacobi 
identity. From the study of the cohomology of Lie algebra (Bandelloni 
et aL, 1978), [ . ,  �9 ]t is proportional to [ . ,  �9 ]. Let us call the proportionality 
constant Z~/2Zg: 

[ "," ]r = ZI /ZZg[ ' ,  " ] (4.22) 
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For the case of V +§ by dimensions one has 

a~V ++ = Z'(D++C + i[ V ++, C]r) (4.23) 

The condition (6~)2V++=0 leads to Z = Z ' .  In exactly the same way, we 
obtain 

6~,V ++ = Z'(O++C'+ i[ V ++, C']r) 
(4.24) 

r , _ _ ! 7 , , i -  t ~ ,  6e'C = 2--- t ,~ ,  C']r 

where Z" is a priori different from Z. For dimensional reasons, 6~,C is given 
by 

6~,C = -t~b+ v[ C, C']r (4.25) 
r r r r + +  but the condition ( ~ e , +  t~,8~) V = 0 implies that v = - Z "  and Z"= tzZ. 

Therefore, one gets 

6~,C = - t z ( b + Z [ C ,  C'],)  (4.26) 

Consequently, by using the condition (8~,)2C = 0, we obtain from (4.24) 

6~,b =-Z6~,[C, C']~ 

or equivalently 

6~,b = IzZ[C', b]~ (4.27) 

Hence, the condition (6~,)2b = 0 is immediately satisfied. Finally, 6~ and 6~, 
satisfy the following equations: 

r + +  6eV =Z(D++C+i[V++, C]r), 

a~c = - ~ z [ c ,  c]r,  

6~C'=b, 

8 ~ b : 0 ,  

6~, V +§ = txZ( D++ C' + i[ V ++, C']r) 

a~,c = - ~ ( b + Z [ C ,  C']r) 

- ~ z z [  c , c ']r a~,c' = l 

6re,b = IzZ[ C', b ]~ 

We note that equations (3.3), (3.8a), and (4.26) are identical up to an overall 
rescaling. Therefore, Lr can be determined, in the same way as (3.10), by 
requiring the 6~ and ~ ,  invariances. This leads to the multiplicative 
renormalizability of N = 2 supersymmetric Yang-Mills theory. 

5. CONCLUSION 

In this paper we first derived the BRS and anti-BRS transformations 
for all superfields of N = 2 supersymmetric theory. Also we have seen how 
the matter hypermultiplet is included in the quantization of N = 2 supersym- 
metric Yang-Mills theory in harmonic superspace by requiring BRS and 
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anti-BRS invariances. The R_r or t 'Hooft gauge is recovered for a particular 
choice of gauge parameters. Second, we have derived the BRS and anti-BRS 
WI of N = 2 supersymmetric, Yang-Mills theory by using the functional 
formalism. The renormalized effective action is then given by adding local 
counterterms in all superfields for the Feynman gauge a = 1. Furthermore, 
the renormalized BRS and anti-BRS operators, which will imply a multi- 
plicative renormalizability of N = 2  supersymmetric theory, have been 
obtained. 
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